75^2=x^2+(x+51)

Simple and best practice solution for 75^2=x^2+(x+51) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 75^2=x^2+(x+51) equation:



75^2=x^2+(x+51)
We move all terms to the left:
75^2-(x^2+(x+51))=0
We add all the numbers together, and all the variables
-(x^2+(x+51))+5625=0
We calculate terms in parentheses: -(x^2+(x+51)), so:
x^2+(x+51)
We get rid of parentheses
x^2+x+51
Back to the equation:
-(x^2+x+51)
We get rid of parentheses
-x^2-x-51+5625=0
We add all the numbers together, and all the variables
-1x^2-1x+5574=0
a = -1; b = -1; c = +5574;
Δ = b2-4ac
Δ = -12-4·(-1)·5574
Δ = 22297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{22297}}{2*-1}=\frac{1-\sqrt{22297}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{22297}}{2*-1}=\frac{1+\sqrt{22297}}{-2} $

See similar equations:

| 10g-2g+2g-9g-1=5 | | 4h-4=24 | | 180=8x+3 | | x=-16(9)+79(3)+47 | | -x^2+1x-4=0 | | 7-3(5-a)=5(a-4) | | 9a-3a-5a+3=17 | | 7-3(5-a)=5(a-4 | | f(3)=-16(9)+79(3)+47 | | 4n-n+n+1=9 | | 5=849x5,753 | | 3x-7=2(2x-4) | | 7d-6d+2d+3d-4=14 | | 5/18=5/6y | | 3(7g+8)/4=16.5 | | 8m-8m+m+1=10 | | 630-0.00635x^2=0 | | 8q-7q-1=5 | | 4x+5/6=5x+7/6 | | 5x+2=(1/2)4x+1+27 | | 1200-40x=400+40x | | 18-4h=10 | | 8d+4d+d-4-5d=0 | | -8(4+4n)=8(n=6) | | 5m-4m+5m=6 | | X+x-335+x+80=2425 | | x=3+1/1.66666666667 | | 12r-4r-2r=18 | | 4m+2m(m+1)=9m+5 | | 8.77=p-1.23 | | 4.3x-6.68=8.8 | | 0=1.5x^2-24 |

Equations solver categories